Infinite dimensional Ornstein-Uhlenbeck processes with unbounded diffusion - Approximation, quadratic variation, and Itô formula
The paper studies a class of Ornstein–Uhlenbeck processes on the classical Wiener space. These processes are associated with a diffusion type Dirichlet form whose corresponding diffusion operator is unbounded in the Cameron–Martin space. It is shown that the distributions of certain finite dimension...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2016-12, Vol.289 (17-18), p.2192-2222 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper studies a class of Ornstein–Uhlenbeck processes on the classical Wiener space. These processes are associated with a diffusion type Dirichlet form whose corresponding diffusion operator is unbounded in the Cameron–Martin space. It is shown that the distributions of certain finite dimensional Ornstein–Uhlenbeck processes converge weakly to the distribution of such an infinite dimensional Ornstein–Uhlenbeck process. For the infinite dimensional processes, the ordinary scalar quadratic variation is calculated. Moreover, relative to the stochastic calculus via regularization, the scalar as well as the tensor quadratic variation are derived. A related Itô formula is presented. |
---|---|
ISSN: | 0025-584X 1522-2616 1522-2616 |
DOI: | 10.1002/mana.201500146 |