Infinite dimensional Ornstein-Uhlenbeck processes with unbounded diffusion - Approximation, quadratic variation, and Itô formula

The paper studies a class of Ornstein–Uhlenbeck processes on the classical Wiener space. These processes are associated with a diffusion type Dirichlet form whose corresponding diffusion operator is unbounded in the Cameron–Martin space. It is shown that the distributions of certain finite dimension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2016-12, Vol.289 (17-18), p.2192-2222
Hauptverfasser: Karlsson, John, Löbus, Jörg-Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper studies a class of Ornstein–Uhlenbeck processes on the classical Wiener space. These processes are associated with a diffusion type Dirichlet form whose corresponding diffusion operator is unbounded in the Cameron–Martin space. It is shown that the distributions of certain finite dimensional Ornstein–Uhlenbeck processes converge weakly to the distribution of such an infinite dimensional Ornstein–Uhlenbeck process. For the infinite dimensional processes, the ordinary scalar quadratic variation is calculated. Moreover, relative to the stochastic calculus via regularization, the scalar as well as the tensor quadratic variation are derived. A related Itô formula is presented.
ISSN:0025-584X
1522-2616
1522-2616
DOI:10.1002/mana.201500146