Broad targeting of angiogenesis for cancer prevention and therapy

Abstract Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Seminars in cancer biology 2015-12, Vol.35 (Suppl), p.S224-S243
Hauptverfasser: Wang, Zongwei, Dabrosin, Charlotta, Yin, Xin, Fuster, Mark M, Arreola, Alexandra, Rathmell, W. Kimryn, Generali, Daniele, Nagaraju, Ganji P, El-Rayes, Bassel, Ribatti, Domenico, Chen, Yi Charlie, Honoki, Kanya, Fujii, Hiromasa, Georgakilas, Alexandros G, Nowsheen, Somaira, Amedei, Amedeo, Niccolai, Elena, Amin, Amr, Ashraf, S. Salman, Helferich, Bill, Yang, Xujuan, Guha, Gunjan, Bhakta, Dipita, Ciriolo, Maria Rosa, Aquilano, Katia, Chen, Sophie, Halicka, Dorota, Mohammed, Sulma I, Azmi, Asfar S, Bilsland, Alan, Keith, W. Nicol, Jensen, Lasse D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available lit
ISSN:1044-579X
1096-3650
1096-3650
DOI:10.1016/j.semcancer.2015.01.001