A 10-bit 50 MS/s SAR ADC in 65 nm CMOS with on-chip reference voltage buffer

This paper presents the design of a 10-bit, 50 MS/s successive approximation register (SAR) analog-to-digital converter (ADC) with an on-chip reference voltage buffer implemented in 65 nm CMOS process. The speed limitation on SAR ADCs with off-chip reference voltage and the necessity of a fast-settl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integration (Amsterdam) 2015-06, Vol.50, p.28-38
Hauptverfasser: Harikumar, Prakash, Wikner, J. Jacob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the design of a 10-bit, 50 MS/s successive approximation register (SAR) analog-to-digital converter (ADC) with an on-chip reference voltage buffer implemented in 65 nm CMOS process. The speed limitation on SAR ADCs with off-chip reference voltage and the necessity of a fast-settling reference voltage buffer are elaborated. Design details of a high-speed reference voltage buffer which ensures precise settling of the DAC output voltage in the presence of bond wire inductances are provided. The ADC uses bootstrapped switches for input sampling, a double-tail high-speed dynamic comparator and split binary-weighted capacitive array charge redistribution DACs. The split binary-weighted array DAC topology helps us to achieve low area and less capacitive load and thus enhances power efficiency. Top-plate sampling is utilized in the DAC to reduce the number of switches. In post-layout simulation which includes the entire pad frame and associated parasitics, the ADC achieves an ENOB of 9.25 bits at a supply voltage of 1.2 V, typical process corner and sampling frequency of 50 MS/s for near-Nyquist input. Excluding the reference voltage buffer, the ADC consumes 697 mu W and achieves an energy efficiency of 25 fJ/conversion-step while occupying a core area of 0.055 mm super(2).
ISSN:0167-9260
1872-7522
DOI:10.1016/j.vlsi.2015.01.002