Carrier Lifetime Controlling Defects Z(1/2) and RB1 in Standard and Chlorinated Chemistry Grown 4H-SiC

4H-SiC epilayers grown by standard and chlorinated chemistry were analyzed for their minority carrier lifetime and deep level recombination centers using time-resolved photoluminescence (TRPL) and standard deep level transient spectroscopy (DLTS). Next to the well-known Z(1/2) deep level a second ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2014-08, Vol.14 (8), p.4104
Hauptverfasser: Booker, Ian Don, Ul Hassan, Jawad, Lilja, Louise, Beyer, Franziska, Karhu, Robin, Bergman, J. Peder, Danielsson, Örjan, Kordina, Olof, Sveinbjörnsson, Einar, Janzén, Erik
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:4H-SiC epilayers grown by standard and chlorinated chemistry were analyzed for their minority carrier lifetime and deep level recombination centers using time-resolved photoluminescence (TRPL) and standard deep level transient spectroscopy (DLTS). Next to the well-known Z(1/2) deep level a second effective lifetime killer, RB1 (activation energy 1.05 eV, electron capture cross section 2 x 10(-16) cm(2), suggested hole capture cross section (5 +/- 2) x 10(-15) cm(2)), is detected in chloride chemistry grown epilayers. Junction-DLTS and bulk recombination simulations are used to confirm the lifetime killing properties of this level. The measured RB1 concentration appears to be a function of the iron-related Fe1 level concentration, which is unintentionally introduced via the corrosion of reactor steel parts by the chlorinated chemistry. Reactor design and the growth zone temperature profile are thought to enable the formation of RB1 in the presence of iron contamination under conditions otherwise optimal for growth of material with very low Z(1/2) concentrations. The RB1 defect is either an intrinsic defect similar to RD1/2 or EH5 or a complex involving iron. Control of these corrosion issues allows the growth of material at a high growth rate and with high minority carrier lifetime based on Z(1/2) as the only bulk recombination center.
ISSN:1528-7505
1528-7483
DOI:10.1021/cg5007154