Effect of process parameters on dislocation density in thick 4H-SiC epitaxial layers grown by chloride-based CVD on 4 degrees off-axis substrates

The effect of process parameters such as growth temperature, C/Si ratio, etching time, and Si/H2 ratio on dislocation density was investigated by performing KOH etching on 100 mu m thick epitaxial layers grown on 4 degrees off axis 4H-SiC substrates at various growth conditions by a chemical vapor d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yazdanfar, Milan, Pedersen, Henrik, Kordina, Olle, Janzén, Erik
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of process parameters such as growth temperature, C/Si ratio, etching time, and Si/H2 ratio on dislocation density was investigated by performing KOH etching on 100 mu m thick epitaxial layers grown on 4 degrees off axis 4H-SiC substrates at various growth conditions by a chemical vapor deposition (CVD) process using a chloride-based chemistry to achieve growth rates exceeding 100 mu m/h. We observe that the growth temperature and the growth rate have no significant influence on the dislocation density in the grown epitaxial layers. A low C/Si ratio increases the density of threading screw dislocations (TSD) markedly. The basal plane dislocation (BPD) density was reduced by using a proper in-situ etch prior to growth.
DOI:10.4028/www.scientific.net/MSF.778-780.159