The neuropeptide Y Y1 receptor subtype is necessary for the anxiolytic-like effects of neuropeptide Y, but not the antidepressant-like effects of fluoxetine, in mice
Rationale Neuropeptide Y (NPY) is implicated in the pathophysiology of affective illness. Multiple receptor subtypes (Y1R, Y2R, and Y5R) have been suggested to contribute to NPY’s effects on rodent anxiety and depression-related behaviors. Objectives To further elucidate the role of Y1R in (1) NPY’s...
Gespeichert in:
Veröffentlicht in: | Psychopharmacology 2008, Vol.195 (4), p.547-557 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rationale
Neuropeptide Y (NPY) is implicated in the pathophysiology of affective illness. Multiple receptor subtypes (Y1R, Y2R, and Y5R) have been suggested to contribute to NPY’s effects on rodent anxiety and depression-related behaviors.
Objectives
To further elucidate the role of Y1R in (1) NPY’s anxiolytic-like effects and (2) fluoxetine’s antidepressant-like and neurogenesis-inducing effects.
Methods
Mice lacking Y1R were assessed for spontaneous anxiety-like behavior (open field, elevated plus-maze, and light/dark exploration test) and Pavlovian fear conditioning, and for the anxiolytic-like effects of intracerebroventricularly (icv)-administrated NPY (elevated plus-maze). Next, Y1R −/− were assessed for the antidepressant-like effects of acute fluoxetine in the forced swim test and chronic fluoxetine in the novelty-induced hypophagia test, as well as for chronic fluoxetine-induced hippocampal neurogenesis.
Results
Y1R −/− exhibited largely normal baseline behavior as compared to +/+ littermate controls. Intraventricular administration of NPY in Y1R −/− mice failed to produce the normal anxiolytic-like effect in the elevated plus-maze test seen in +/+ mice. Y1R mutant mice showed higher immobility in the forced swim test and longer latencies in the novelty-induced hypophagia test. In addition, Y1R −/− mice responded normally to the acute and chronic effects of fluoxetine treatment in the forced swim test and the novelty-induced hypophagia test, respectively, as well as increased neuronal precursor cell proliferation in the hippocampus.
Conclusions
These data demonstrate that Y1R is necessary for the anxiolytic-like effects of icv NPY, but not for the antidepressant-like or neurogenesis-inducing effects of fluoxetine. The present study supports targeting Y1R as a novel therapeutic target for anxiety disorders. |
---|---|
ISSN: | 0033-3158 1432-2072 1432-2072 |
DOI: | 10.1007/s00213-007-0945-2 |