Ceria-based Nanostructured Materials for Low-Temperature Solid Oxide Fuel Cells

As one of the most efficient and environmentally benign energy conversion devices, solid oxide fuel cells (SOFC) have attracted much attention in recent years. Conventional SOFC with yttria-stabilized zirconia as electrolyte require high operation temperature (800-1000 °C), which causes significant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ma, Ying
Format: Dissertation
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As one of the most efficient and environmentally benign energy conversion devices, solid oxide fuel cells (SOFC) have attracted much attention in recent years. Conventional SOFC with yttria-stabilized zirconia as electrolyte require high operation temperature (800-1000 °C), which causes significant problems like material degradation, as well as other technological complications and economic barrier for wider applications. Therefore, there is a broad interest in reducing the operation temperature of SOFCs. One of the most promising ways to develop low-temperature SOFCs (LTSOFC) is to explore effective materials for each component with improved properties. So in this thesis, we are aiming to design and fabricate ceria-based nanocomposite materials for electrolyte and electrodes of LTSOFC by a novel nanocomposite approach. In the first part of the thesis, novel core-shell doped ceria/Na 2 CO 3 nanocomposite was fabricated and investigated as electrolytes materials of LTSOFC. Two types of doped ceria were selected as the main phase for nanocomposite: samarium doped ceria (SDC) and calcium doped ceria (CDC). The core-shell SDC/Na 2 CO 3 nanocomposite particles are smaller than 100 nm with amorphous Na 2 CO 3 shell of 4~6 nm in thickness. The ionic conductivity of nanocomposite electrolytes were investigated by EIS and four-probe d.c. method, which demonstrated much enhanced ionic conductivities compared to the single phase oxides. The thermal stability of such nanocomposite has also been investigated based on XRD, BET, SEM and TGA characterization after annealing samples at various temperatures. Such nanocomposite was applied in LTSOFCs with an excellent power density of 0.8 Wcm -2 at 550 °C. The high performances together with notable thermal stability prove the doped ceria/Na 2 CO 3 nanocomposite as a potential electrolyte material for long-term LTSOFCs. In the second part of the thesis, a novel template-, surfactant-free chemical synthetic route has been successfully developed for the controlled synthesis of hierarchically structured CeO 2 with nanowires and mesoporous microspheres morphologies. The new synthetic route was designed by utilizing the chelate formation between cerium ion and various carboxylates forms of citric acid. Then, hierarchically structured cerium oxide with morphologies of nanowires and mesoporous microspheres can be obtained by thermal decomposition of the two kinds of precursors. Moreover, by doping with desired elements, SDC nanowir