Asymptotics for Two-Dimensional Atoms
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge Z > 0 and N quantum electrons of charge −1 is when Z → ∞ and N / Z → λ, where E TF (λ) is given by a Thomas–Fermi type variational problem and c H ≈ −2.2339 is an explicit const...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2012-03, Vol.13 (2), p.333-362 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge
Z
> 0 and
N
quantum electrons of charge −1 is
when
Z
→ ∞ and
N
/
Z
→ λ, where
E
TF
(λ) is given by a Thomas–Fermi type variational problem and
c
H
≈ −2.2339 is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when
Z
→ ∞, which is contrary to the expected behavior of three-dimensional atoms. |
---|---|
ISSN: | 1424-0637 1424-0661 1424-0661 |
DOI: | 10.1007/s00023-011-0123-2 |