Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators
We show that the Lieb-Thirring inequalities on moments of negative eigenvalues of Schrödinger-like operators remain true, with possibly different constants, when the critical Hardy-weight C|x|−2C |x|^{-2} is subtracted from the Laplace operator. We do so by first establishing a Sobolev inequality fo...
Gespeichert in:
Veröffentlicht in: | Journal of the American Mathematical Society 2008-10, Vol.21 (4), p.925-950 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the Lieb-Thirring inequalities on moments of negative eigenvalues of Schrödinger-like operators remain true, with possibly different constants, when the critical Hardy-weight C|x|−2C |x|^{-2} is subtracted from the Laplace operator. We do so by first establishing a Sobolev inequality for such operators. Similar results are true for fractional powers of the Laplacian and the Hardy-weight and, in particular, for relativistic Schrödinger operators. We also allow for the inclusion of magnetic vector potentials. As an application, we extend, for the first time, the proof of stability of relativistic matter with magnetic fields all the way up to the critical value of the nuclear charge Zα=2/πZ\alpha =2/\pi, for α\alpha less than some critical value. |
---|---|
ISSN: | 0894-0347 1088-6834 1088-6834 |
DOI: | 10.1090/S0894-0347-07-00582-6 |