3D Visualization and interaction with spatiotemporal X-ray data to minimize radiation in image-guided surgery
Image-guided surgery (IGS) often depends on X-ray imaging, since pre-operative MRI, CT and PET scans do not provide an up-to-date internal patient view during the operation. X-rays introduce hazardous radiation, but long exposures for monitoring are often necessary to increase accuracy in critical s...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Image-guided surgery (IGS) often depends on X-ray imaging, since pre-operative MRI, CT and PET scans do not provide an up-to-date internal patient view during the operation. X-rays introduce hazardous radiation, but long exposures for monitoring are often necessary to increase accuracy in critical situations. Surgeons often also take multiple X-rays from different angles, as X-rays only provide a distorted 2D perspective from the current viewpoint. We introduce a prototype IGS system that augments 2D X-ray images with spatiotemporal information using a motion tracking system, such that the use of X-rays can be reduced. In addition, an interactive visualization allows exploring 2D X-rays in timeline views and 3D clouds where they are arranged according to the viewpoint at the time of acquisition. The system could be deployed and used without time-consuming calibration, and has the potential to improve surgeons' spatial awareness, while increasing efficiency and patient safety. |
---|---|
ISSN: | 1063-7125 |
DOI: | 10.1109/CBMS.2011.5999129 |