Beating a Random Assignment
Max CSP(P) is the problem of maximizing the weight of satisfied constraints, where each constraint acts over a k-tuple of literals and is evaluated using the predicate P. The approximation ratio of a random assignment is equal to the fraction of satisfying inputs to P. If it is NP-hard to achieve a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Max CSP(P) is the problem of maximizing the weight of satisfied constraints, where each constraint acts over a k-tuple of literals and is evaluated using the predicate P. The approximation ratio of a random assignment is equal to the fraction of satisfying inputs to P. If it is NP-hard to achieve a better approximation ratio for Max CSP(P), then we say that P is approximation resistant. Our goal is to characterize which predicates that have this property.
A general approximation algorithm for Max CSP(P) is introduced. For a multitude of different P, it is shown that the algorithm beats the random assignment algorithm, thus implying that P is not approximation resistant. In particular, over 2/3 of the predicates on four binary inputs are proved not to be approximation resistant, as well as all predicates on 2s binary inputs, that have at most 2s+1 accepting inputs.
We also prove a large number of predicates to be approximation resistant. In particular, all predicates of arity 2s+s2 with less than \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$2^{s^2}$\end{document} non-accepting inputs are proved to be approximation resistant, as well as almost 1/5 of the predicates on four binary inputs. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11538462_12 |