A 1.375-approximation algorithm for sorting by transpositions

Sorting permutations by transpositions is an important problem in genome rearrangements. A transposition is a rearrangement operation in which a segment is cut out of the permutation and pasted in a different location. The complexity of this problem is still open and it has been a ten-year-old open...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ELIAS, Isaac, HARTMAN, Tzvika
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sorting permutations by transpositions is an important problem in genome rearrangements. A transposition is a rearrangement operation in which a segment is cut out of the permutation and pasted in a different location. The complexity of this problem is still open and it has been a ten-year-old open problem to improve the best known 1.5-approximation algorithm. In this paper we provide a 1.375-approximation algorithm for sorting by transpositions. The algorithm is based on a new upper bound on the diameter of 3-permutations. In addition, we present some new results regarding the transposition diameter: We improve the lower bound for the transposition diameter of the symmetric group, and determine the exact transposition diameter of 2-permutations and simple permutations.
ISSN:0302-9743
1611-3349
DOI:10.1007/11557067_17