Wafer-Level Heterogeneous Integration for MOEMS, MEMS, and NEMS
Wafer-level heterogeneous integration technologies for microoptoelectromechanical systems (MOEMS), microelectromechanical systems (MEMS), and nanoelectromechanical systems (NEMS) enable the combination of dissimilar classes of materials and components into single systems. Thus, high-performance mate...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2011-05, Vol.17 (3), p.629-644 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wafer-level heterogeneous integration technologies for microoptoelectromechanical systems (MOEMS), microelectromechanical systems (MEMS), and nanoelectromechanical systems (NEMS) enable the combination of dissimilar classes of materials and components into single systems. Thus, high-performance materials and subsystems can be combined in ways that would otherwise not be possible, and thereby forming complex and highly integrated micro- or nanosystems. Examples include the integration of high-performance optical, electrical or mechanical materials such as monocrystalline silicon, graphene or III-V materials with integrated electronic circuits. In this paper the state-of-the-art of wafer-level heterogeneous integration technologies suitable for MOEMS, MEMS, and NEMS devices are reviewed. Various heterogeneous MOEMS, MEMS, and NEMS devices that have been described in literature are presented. |
---|---|
ISSN: | 1077-260X 1558-4542 1558-4542 |
DOI: | 10.1109/JSTQE.2010.2093570 |