Strengthening mechanisms in solid solution aluminum alloys

A number of commercial and high-purity non-heat-treatable aluminum alloys are investigated in this work. It is found that both magnesium and manganese in solid solution give a nearly linear concentration dependence of the strength at a given strain for commercial alloys. This deviates from high-puri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2006-06, Vol.37 (6), p.1999-2006
Hauptverfasser: RYEN, Øyvind, NIJS, Oscar, SJÖLANDER, Emma, HOLMEDAL, Bjørn, EKSTRÖM, Hans-Erik, NES, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A number of commercial and high-purity non-heat-treatable aluminum alloys are investigated in this work. It is found that both magnesium and manganese in solid solution give a nearly linear concentration dependence of the strength at a given strain for commercial alloys. This deviates from high-purity AlMg binary alloys, where a parabolic concentration dependence is found. Mn in solid solution is found to give a considerably higher strengthening effect per atom than Mg, both in terms of yield stress and initial work hardening rate. This strengthening effect is stronger comparing commercial grades to high-purity alloys. This enhanced strengthening is believed to be a synergy or clustering effect caused by interaction between Mn atoms and trace elements, probably silicon, in solid solution.
ISSN:1073-5623
1543-1940
1543-1940
DOI:10.1007/s11661-006-0142-7