Developing novel hybrid bilayer nanofibers based on polylactic acid with impregnation of chamomile essential oil and gallic acid-stabilized silver nanoparticles
This study presents fabrication and characterization of novel chamomile essential oil (CMO)/gallic acid-stabilized silver nanoparticles (gallic acid-nanosilver, GNS), embedded into polylactic acid (PLA)-based hybrid bilayer nanofibers (NFs). Where CMO was impregnated into polyvinyl alcohol (PVA)-pol...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-12, Vol.282 (Pt 6), p.137262, Article 137262 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study presents fabrication and characterization of novel chamomile essential oil (CMO)/gallic acid-stabilized silver nanoparticles (gallic acid-nanosilver, GNS), embedded into polylactic acid (PLA)-based hybrid bilayer nanofibers (NFs). Where CMO was impregnated into polyvinyl alcohol (PVA)-polyethylene glycol (PEG) solution and electrospun simultaneously with PLA to obtain PLA/PVA-PEG-CMO NFs (PLA/CMO A2). Meanwhile, GNS were added to PVA-PEG-CMO and electrospun to obtain PLA/PVA-PEG-CMO-GNS NFs (PLA/CMO-GNS A3). Where pure PLA/PVA-PEG NFs were coded pure PLA/A1. Physicochemical properties of fabricated bilayer-NFs were performed using various approaches. Besides, porosity%, swelling, biodegradability, CMO release pattern, antioxidant, antibacterial activity and cytotoxicity were investigated. Study investigation revealed PLA-based bilayer NFs exhibited a biphasic release profile for impregnated CMO. Due to presence of GA, antioxidant property and biocompatibility of PLA/CMO-GNS A3 was superior compared to pure PLA/A1 and PLA/CMO A2. Antibacterial activity was enhanced in presence of CMO in PLA/CMO A2 than pure PLA/A1. Furthermore, addition of GNS in PLA/CMO-GNS A3 displayed highest antibacterial activity due to synergy of CMO/GNS. Finally, MTT assay with HFB4 fibroblasts demonstrated absence of cytotoxicity of bilayer-based NFs. Thus, study suggests that developed PLA/PVA-PEG NFs could be a promising candidate for tissue regeneration and food edible packaging in particular when impregnated with both CMO/GNS. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.137262 |