The rigidity conjecture
A central question in dynamics is whether the topology of a system determines its geometry. This is known as rigidity. Under mild topological conditions rigidity holds for many classical cases, including: Kleinian groups, circle diffeomorphisms, unimodal interval maps, critical circle maps, and circ...
Gespeichert in:
Veröffentlicht in: | Indagationes mathematicae 2018-06, Vol.29 (3), p.825-830 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A central question in dynamics is whether the topology of a system determines its geometry. This is known as rigidity. Under mild topological conditions rigidity holds for many classical cases, including: Kleinian groups, circle diffeomorphisms, unimodal interval maps, critical circle maps, and circle maps with a break point. More recent developments show that under similar topological conditions, rigidity does not hold for slightly more general systems. In this paper we state a conjecture which describes how topological classes are organized into rigidity classes. |
---|---|
ISSN: | 0019-3577 1872-6100 1872-6100 |
DOI: | 10.1016/j.indag.2017.08.001 |