Quasi-symmetric conjugacy for circle maps with a flat interval

In this paper we study quasi-symmetric conjugations of ${\mathcal{C}}^{2}$ weakly order-preserving circle maps with a flat interval. Under the assumption that the maps have the same rotation number of bounded type and that bounded geometry holds, we construct a quasi-symmetric conjugation between th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2019-02, Vol.39 (2), p.425-445
1. Verfasser: PALMISANO, LIVIANA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study quasi-symmetric conjugations of ${\mathcal{C}}^{2}$ weakly order-preserving circle maps with a flat interval. Under the assumption that the maps have the same rotation number of bounded type and that bounded geometry holds, we construct a quasi-symmetric conjugation between their non-wandering sets. Further, this conjugation is extended to a quasi-symmetric circle homeomorphism. Our proof techniques hinge on real-dynamic methods, allowing us to construct the conjugation under general and natural assumptions.
ISSN:0143-3857
1469-4417
1469-4417
DOI:10.1017/etds.2017.36