Quasi-symmetric conjugacy for circle maps with a flat interval
In this paper we study quasi-symmetric conjugations of ${\mathcal{C}}^{2}$ weakly order-preserving circle maps with a flat interval. Under the assumption that the maps have the same rotation number of bounded type and that bounded geometry holds, we construct a quasi-symmetric conjugation between th...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2019-02, Vol.39 (2), p.425-445 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study quasi-symmetric conjugations of
${\mathcal{C}}^{2}$
weakly order-preserving circle maps with a flat interval. Under the assumption that the maps have the same rotation number of bounded type and that bounded geometry holds, we construct a quasi-symmetric conjugation between their non-wandering sets. Further, this conjugation is extended to a quasi-symmetric circle homeomorphism. Our proof techniques hinge on real-dynamic methods, allowing us to construct the conjugation under general and natural assumptions. |
---|---|
ISSN: | 0143-3857 1469-4417 1469-4417 |
DOI: | 10.1017/etds.2017.36 |