A high-order conservative cut finite element method for problems in time-dependent domains
A mass-conservative high-order unfitted finite element method for convection–diffusion equations in evolving domains is proposed. The space–time method presented in [P. Hansbo, M. G. Larson, S. Zahedi, Comput. Methods Appl. Mech. Engrg. 307 (2016)] is extended to naturally achieve mass conservation...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2024-11, Vol.431, p.117245, Article 117245 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A mass-conservative high-order unfitted finite element method for convection–diffusion equations in evolving domains is proposed. The space–time method presented in [P. Hansbo, M. G. Larson, S. Zahedi, Comput. Methods Appl. Mech. Engrg. 307 (2016)] is extended to naturally achieve mass conservation by utilizing Reynolds’ transport theorem. Furthermore, by partitioning the time-dependent domain into macroelements, a more efficient stabilization procedure for the cut finite element method in time-dependent domains is presented. Numerical experiments illustrate that the method fulfills mass conservation, attains high-order convergence, and the condition number of the resulting system matrix is controlled while sparsity is increased. Problems in bulk domains as well as coupled bulk-surface problems are considered. |
---|---|
ISSN: | 0045-7825 1879-2138 |
DOI: | 10.1016/j.cma.2024.117245 |