In situ polymerization design of a quasi-solid electrolyte enhanced by NMP additive for lithium metal batteries

Solid polymer electrolytes (SPEs) are considered one promising candidate for lithium metal batteries due to their high flexibility, low cost, and roll-to-roll scalability. However, conventional SPEs prepared via ex situ methods are confronted with challenges such as poor contact and high resistance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy Storage Materials 2024-05, Vol.69, p.103390, Article 103390
Hauptverfasser: Wang, Shangjie, Lv, Qiang, Jing, Yutong, Wang, Bo, Wang, Dianlong, Liu, Huakun, Dou, Shixue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solid polymer electrolytes (SPEs) are considered one promising candidate for lithium metal batteries due to their high flexibility, low cost, and roll-to-roll scalability. However, conventional SPEs prepared via ex situ methods are confronted with challenges such as poor contact and high resistance at the electrode|SPE interface, as well as low ionic conductivity at room temperature. In this study, we developed a quasi-solid electrolyte (QSE) using an in situ polymerization approach, employing butyl acrylate as the monomer and incorporating NMP as an additive. Spectroscopic investigations and DFT calculations revealed that NMP tends to form an overleaf-structured [Li(NMP)3][TFSI] complex with LiTFSI, promoting lithium salt dissociation. Owing to this advantage, the QSE exhibits high room-temperature ionic conductivity (6.94 × 10−4 S cm−1) and an extensive electrochemical stability window (5.01 V vs. Li+/Li). Furthermore, the in situ polymerization method facilitates full contact at the interface, enhancing the interfacial stability and reducing the interface resistance, thus resulting in stable cycling of Li|Built-in QSE|Li symmetric cell for 1100 h at 0.1 mA cm−2. The assembled LiFePO4|Built-in QSE|Li cell also demonstrates excellent rate and long-term cycling performance. Our findings offer valuable insights into the interaction between organic additives and lithium salts and present a novel strategy for the development of polymer electrolytes.
ISSN:2405-8297
2405-8289
2405-8289
DOI:10.1016/j.ensm.2024.103390