Riemann-Hilbert hierarchies for hard edge planar orthogonal polynomials
We obtain a full asymptotic expansion for orthogonal polynomials with respect to weighted area measure on a Jordan domain $\mathscr{D}$ with real-analytic boundary. The weight is fixed and assumed to be real-analytically smooth and strictly positive, and for any given precision $\varkappa$, the expa...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2024-04, Vol.146 (2), p.371-403 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain a full asymptotic expansion for orthogonal polynomials with respect to weighted area measure on a Jordan domain $\mathscr{D}$ with real-analytic boundary. The weight is fixed and assumed to be real-analytically smooth and strictly positive, and for any given precision $\varkappa$, the expansion holds with an $\mathrm{O}(N^{-\varkappa-1})$ error in $N$-dependent neighborhoods of the exterior region as the degree $N$ tends to infinity. The main ingredient is the derivation and analysis of Riemann-Hilbert hierarchies---sequences of scalar Riemann-Hilbert problems---which allows us to express all higher order correction terms in closed form. Indeed, the expansion may be understood as a Neumann series involving an explicit operator. The expansion theorem leads to a semiclassical asymptotic expansion of the corresponding hard edge probability wave function in terms of distributions supported on $\partial\mathscr{D}$. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.2024.a923237 |