Semla: a versatile toolkit for spatially resolved transcriptomics analysis and visualization
Abstract Summary Spatially resolved transcriptomics technologies generate gene expression data with retained positional information from a tissue section, often accompanied by a corresponding histological image. Computational tools should make it effortless to incorporate spatial information into da...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2023-10, Vol.39 (10) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Summary
Spatially resolved transcriptomics technologies generate gene expression data with retained positional information from a tissue section, often accompanied by a corresponding histological image. Computational tools should make it effortless to incorporate spatial information into data analyses and present analysis results in their histological context. Here, we present semla, an R package for processing, analysis, and visualization of spatially resolved transcriptomics data generated by the Visium platform, that includes interactive web applications for data exploration and tissue annotation.
Availability and implementation
The R package semla is available on GitHub (https://github.com/ludvigla/semla), under the MIT License, and deposited on Zenodo (https://doi.org/10.5281/zenodo.8321645). Documentation and tutorials with detailed descriptions of usage can be found at https://ludvigla.github.io/semla/. |
---|---|
ISSN: | 1367-4803 1367-4811 1367-4811 |
DOI: | 10.1093/bioinformatics/btad626 |