Superconvergence and accuracy enhancement of discontinuous Galerkin solutions for Vlasov–Maxwell equations
This paper explores the discontinuous Galerkin (DG) methods for solving the Vlasov–Maxwell (VM) system, a fundamental model for collisionless magnetized plasma. The DG method provides an accurate numerical description with conservation and stability properties. This work studies the applicability of...
Gespeichert in:
Veröffentlicht in: | BIT 2023-12, Vol.63 (4), Article 52 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper explores the discontinuous Galerkin (DG) methods for solving the Vlasov–Maxwell (VM) system, a fundamental model for collisionless magnetized plasma. The DG method provides an accurate numerical description with conservation and stability properties. This work studies the applicability of a post-processing technique to the DG solution in order to enhance its accuracy and resolution for the VM system. In particular, superconvergence in the negative-order norm for the probability distribution function and the electromagnetic fields is established for the DG solution. Numerical tests including Landau damping, two-stream instability, and streaming Weibel instabilities are considered showing the performance of the post-processor. |
---|---|
ISSN: | 0006-3835 1572-9125 1572-9125 |
DOI: | 10.1007/s10543-023-00993-9 |