Superconvergence and accuracy enhancement of discontinuous Galerkin solutions for Vlasov–Maxwell equations

This paper explores the discontinuous Galerkin (DG) methods for solving the Vlasov–Maxwell (VM) system, a fundamental model for collisionless magnetized plasma. The DG method provides an accurate numerical description with conservation and stability properties. This work studies the applicability of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIT 2023-12, Vol.63 (4), Article 52
Hauptverfasser: Galindo-Olarte, Andrés, Huang, Juntao, Ryan, Jennifer, Cheng, Yingda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper explores the discontinuous Galerkin (DG) methods for solving the Vlasov–Maxwell (VM) system, a fundamental model for collisionless magnetized plasma. The DG method provides an accurate numerical description with conservation and stability properties. This work studies the applicability of a post-processing technique to the DG solution in order to enhance its accuracy and resolution for the VM system. In particular, superconvergence in the negative-order norm for the probability distribution function and the electromagnetic fields is established for the DG solution. Numerical tests including Landau damping, two-stream instability, and streaming Weibel instabilities are considered showing the performance of the post-processor.
ISSN:0006-3835
1572-9125
1572-9125
DOI:10.1007/s10543-023-00993-9