Experimental Studies of Complex Flows through Image-Based Techniques

This thesis deals with the development of experimental techniques for the study of complex flows inspired to a large extent by the papermaking process. In particular one part of this thesis is devoted to the development of laboratory experiments based on index-of-refraction matching and imaging tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bellani, Gabriele
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This thesis deals with the development of experimental techniques for the study of complex flows inspired to a large extent by the papermaking process. In particular one part of this thesis is devoted to the development of laboratory experiments based on index-of-refraction matching and imaging techniques to study the behavior of dilute and concentrated suspension of elongated particles. Another part is aimed at exploring the potential of the synergy between experiments and numerical simulations to access quantities otherwise not-measurable in complex flows. Highspeedimaging experiments have been specifically designed for this purpose. The first of the Refractive IndexMatching (RIM) experiment was aimed at studying the flow generated during the filtration of a fiber suspension using Particle Image Velocimetry (PIV) and pressure drop measurements. The experiments were performed in a vertical laboratory filtration device. Index of refraction matching of fibers and fluids allowed measurements to be performed in the proximity and, to some extent, in the forming network during filtration. The area over which the forming network induces velocity gradients has been measured and have been found to be independent of the Reynolds number but dependent on the fiber length and the structure of the network. Analysis of the flow scales in the proximity of the network showed that the signature of the mesh used to filter the suspension is never completely suppressed as the network thickness increases. Also, pressure drop measurements over a static fiber network have been performed. A linear dependence of the pressure drop with the basis weight (mass of fibers in the network per unit area) and a non-dimensional filtration resistance independent of filtration velocity and network thickness (if network compressibility is accounted for) was found. These findings can help explain characteristics that are observed on paper sheets and help improvede watering efficiency. The second RIM experiment was aimed at measuring the interactions of Taylorscale elongated particles with turbulence. RIM particles with embedded tracers and Stereoscopic PIV were combined to simultaneously measure fluid phase and particle velocity. The novelty of this technique is that it allows to measure the three-dimensional angular velocity vector of arbitrarily shaped particles. This technique was applied to study the interaction of neutrally buoyant ellipsoidal particles with stationary homogeneous isotropi