Residual Estimates for Post-processors in Elliptic Problems

In this work we examine a posteriori error control for post-processed approximations to elliptic boundary value problems. We introduce a class of post-processing operator that “tweaks” a wide variety of existing post-processing techniques to enable efficient and reliable a posteriori bounds to be pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2021-08, Vol.88 (2), p.34, Article 34
Hauptverfasser: Dedner, Andreas, Giesselmann, Jan, Pryer, Tristan, Ryan, Jennifer K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we examine a posteriori error control for post-processed approximations to elliptic boundary value problems. We introduce a class of post-processing operator that “tweaks” a wide variety of existing post-processing techniques to enable efficient and reliable a posteriori bounds to be proven. This ultimately results in optimal error control for all manner of reconstruction operators, including those that superconverge. We showcase our results by applying them to two classes of very popular reconstruction operators, the Smoothness-Increasing Accuracy-Conserving filter and superconvergent patch recovery. Extensive numerical tests are conducted that confirm our analytic findings.
ISSN:0885-7474
1573-7691
1573-7691
DOI:10.1007/s10915-021-01502-2