Effect of Droplet Size and Atomization on Spray Formation: A Priori Study Using Large-Eddy Simulation

The paper is mainly focused to the vast number of researchers who work within direct injection (DI) engine fuel spray simulations. The most common simulation framework today within the community is the Reynolds Averaged Navier Stokes (RANS) approach together with the Lagrangian Particle Tracking (LP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Flow, turbulence and combustion turbulence and combustion, 2011-04, Vol.86 (3-4), p.533-561
Hauptverfasser: Vuorinen, Ville Anton, Hillamo, Harri, Kaario, Ossi, Nuutinen, Mika, Larmi, Martti, Fuchs, Laszlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper is mainly focused to the vast number of researchers who work within direct injection (DI) engine fuel spray simulations. The most common simulation framework today within the community is the Reynolds Averaged Navier Stokes (RANS) approach together with the Lagrangian Particle Tracking (LPT) method. In fact, this study is one of the first studies where high resolution LES/LPT diesel spray modeling is considered. The potential of LES to deepen the present day multidimensional LPT fuel spray simulations is discussed. Spray evolution is studied far from an injector by modeling a spray as a particle laden jet (PLJ). The effect of d on mixing in non-atomizing and atomizing sprays is thoroughly investigated at jet inlet Reynolds number Re  = 10 4 and Mach number Ma  = 0.3. Based on and justified by rather recent and also quite old ideas, novel and compact views on droplet breakup in turbulent flows are pointed out from the literature. We use LES/LPT to illustrate that even in a low Weber number flow ( We  
ISSN:1386-6184
1573-1987
1573-1987
DOI:10.1007/s10494-010-9266-3