Antiferromagnet-mediated interlayer exchange: Hybridization versus proximity effect
We investigate the interlayer coupling between two thin ferromagnetic (F) films mediated by an antiferromagnetic (AF) spacer in F∗/AF/F trilayers and show how it transitions between different regimes on changing the AF thickness. Employing layer-selective Kerr magnetometry and ferromagnetic-resonanc...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2023-06, Vol.107 (22), Article 224432 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the interlayer coupling between two thin ferromagnetic (F) films mediated by an antiferromagnetic (AF) spacer in F∗/AF/F trilayers and show how it transitions between different regimes on changing the AF thickness. Employing layer-selective Kerr magnetometry and ferromagnetic-resonance techniques in a complementary manner enables us to distinguish between three functionally distinct regimes of such ferromagnetic interlayer coupling. The F layers are found to be individually and independently exchange-biased for thick FeMn spacers - the first regime of no interlayer F-F∗ coupling. F-F∗ coupling appears on decreasing the FeMn thickness below 9 nm. In this second regime found in structures with 6.0-9.0-nm-thick FeMn spacers, the interlayer coupling exists only in a finite temperature interval just below the effective Néel temperature of the spacer, which is due to magnon-mediated exchange through the thermally softened antiferromagnetic spacer, vanishing at lower temperatures. The third regime, with FeMn thinner than 4 nm, is characterized by a much stronger interlayer coupling in the entire temperature interval, which is attributed to a magnetic-proximity induced ferromagnetic exchange. These experimental results, spanning the key geometrical parameters and thermal regimes of the F∗/AF/F nanostructure, complemented by a comprehensive theoretical analysis, should broaden the understanding of the interlayer exchange in magnetic multilayers and potentially be useful for applications in spin thermionics. |
---|---|
ISSN: | 2469-9950 2469-9969 2469-9969 |
DOI: | 10.1103/PhysRevB.107.224432 |