Critical prethermal discrete time crystal created by two-frequency driving
Discrete time crystals are non-equilibrium many-body phases of matter characterized by spontaneously broken discrete time-translation symmetry under periodic driving. At sufficiently high driving frequencies, the system enters the Floquet prethermalization regime, in which the periodically driven ma...
Gespeichert in:
Veröffentlicht in: | Nature physics 2023-03, Vol.19 (3), p.407-413 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Discrete time crystals are non-equilibrium many-body phases of matter characterized by spontaneously broken discrete time-translation symmetry under periodic driving. At sufficiently high driving frequencies, the system enters the Floquet prethermalization regime, in which the periodically driven many-body state has a lifetime vastly exceeding the intrinsic decay time of the system. Here, we report the observation of long-lived prethermal discrete time-crystalline order in a three-dimensional (3D) lattice of
13
C nuclei in diamond at room temperature. We demonstrate a two-frequency driving protocol, involving an interleaved application of slow and fast drives that simultaneously prethermalize the spins with an emergent quasi-conserved magnetization along the
x
̂
axis. This enables continuous and highly resolved observation of their dynamic evolution. We obtain videos of the time-crystalline response with a clarity and throughput orders of magnitude greater than previous experiments. Parametric control over the drive frequencies allows us to reach time-crystal lifetimes of up to 396 Floquet cycles, which we measure in a single-shot experiment. Such rapid measurement enables detailed characterization of the entire phase diagram, highlighting the role of prethermalization in stabilizing the time-crystal response. The two-frequency drive approach expands the toolkit for investigating non-equilibrium phases of matter stabilized by emergent quasi-conservation laws.
Time-crystalline order appears in periodically driven systems with broken time-translation symmetry. Now, a protocol based on pulse drives of different frequencies is used to create and continuously observe time crystals with long lifetimes. |
---|---|
ISSN: | 1745-2473 1745-2481 1745-2481 |
DOI: | 10.1038/s41567-022-01891-7 |