Conformal Field Theory at the Lattice Level: Discrete Complex Analysis and Virasoro Structure

Critical statistical mechanics and Conformal Field Theory (CFT) are conjecturally connected since the seminal work of Beliavin et al. (Nucl Phys B 241(2):333–380, 1984). Both exhibit exactly solvable structures in two dimensions. A long-standing question (Itoyama and Thacker in Phys Rev Lett 58:1395...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2022, Vol.395 (1), p.1-58
Hauptverfasser: Hongler, Clément, Kytölä, Kalle, Viklund, Fredrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Critical statistical mechanics and Conformal Field Theory (CFT) are conjecturally connected since the seminal work of Beliavin et al. (Nucl Phys B 241(2):333–380, 1984). Both exhibit exactly solvable structures in two dimensions. A long-standing question (Itoyama and Thacker in Phys Rev Lett 58:1395–1398, 1987) concerns whether there is a direct link between these structures, that is, whether the Virasoro algebra representations of CFT, the distinctive feature of CFT in two dimensions, can be found within lattice models of statistical mechanics. We give a positive answer to this question for the discrete Gaussian free field and for the Ising model, by connecting the structures of discrete complex analysis in the lattice models with the Virasoro symmetry that is expected to describe their scaling limits. This allows for a tight connection of a number of objects from the lattice model world and the field theory one. In particular, our results link the CFT local fields with lattice local fields introduced in Gheissari et al. (Commun Math Phys 367(3):771–833, 2019) and the probabilistic formulation of the lattice model with the continuum correlation functions. Our construction is a decisive step towards establishing the conjectured correspondence between the correlation functions of the CFT fields and those of the lattice local fields. In particular, together with the upcoming (Chelkak et al. in preparation), our construction will complete the picture initiated in Hongler and Smirnov (Acta Math 211:191–225, 2013), Hongler (Conformal invariance of ising model correlations, 2012) and Chelkak et al. (Annals Math 181(3):1087–1138, 2015), where a number of conjectures relating specific Ising lattice fields and CFT correlations were proven.
ISSN:0010-3616
1432-0916
1432-0916
DOI:10.1007/s00220-022-04475-x