Digital twin-enabled advance execution for human-robot collaborative assembly
A reliable human-robot workcell relies on accurate and nearly real-time updated models, especially in a constrained yet dynamic environment. This paper investigates digital twin-driven human-robot collaborative assembly enabled by function blocks. Leveraging sensor data, digital models are developed...
Gespeichert in:
Veröffentlicht in: | CIRP annals 2022, Vol.71 (1), p.25-28 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A reliable human-robot workcell relies on accurate and nearly real-time updated models, especially in a constrained yet dynamic environment. This paper investigates digital twin-driven human-robot collaborative assembly enabled by function blocks. Leveraging sensor data, digital models are developed to precisely mimic physical human-robot collaborative settings supported by a digital-twin architecture. An advance-execution twin system based on the current status through real-time condition monitoring performs assembly planning and adaptive robot control using a network of function blocks. An augmented reality-based interaction method using HoloLens further facilitates human-centric assembly. An engine-assembly case study is performed to validate the effectiveness of the system. |
---|---|
ISSN: | 0007-8506 1726-0604 |
DOI: | 10.1016/j.cirp.2022.03.024 |