Limiting Directions for Random Walks in Classical Affine Weyl Groups
Let $W$ be a finite Weyl group and $\widetilde W$ the corresponding affine Weyl group. A random element of $\widetilde W$ can be obtained as a reduced random walk on the alcoves of $\widetilde W$. By a theorem of Lam (Ann. Prob. 2015), such a walk almost surely approaches one of $|W|$ many direction...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2023-02, Vol.2023 (4), p.3092-3137 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $W$ be a finite Weyl group and $\widetilde W$ the corresponding affine Weyl group. A random element of $\widetilde W$ can be obtained as a reduced random walk on the alcoves of $\widetilde W$. By a theorem of Lam (Ann. Prob. 2015), such a walk almost surely approaches one of $|W|$ many directions. We compute these directions when $W$ is $B_n$, $C_n$, and $D_n$ and the random walk is weighted by Kac and dual Kac labels. This settles Lam’s questions for types $B$ and $C$ in the affirmative and for type $D$ in the negative. The main tool is a combinatorial two row model for a totally asymmetric simple exclusion process (TASEP) called the $D^*$-TASEP, with four parameters. By specializing the parameters in different ways, we obtain TASEPs for each of the Weyl groups mentioned above. Computing certain correlations in these TASEPs gives the desired limiting directions. |
---|---|
ISSN: | 1073-7928 1687-0247 1687-0247 |
DOI: | 10.1093/imrn/rnab317 |