Quasi-static compression behavior and microstructure changes in low-cost AA6061 composites

The workability study of the composites enhances the understanding of the degree of plastic deformation that can be employed on it. The current research work highlights the response of the low-cost aluminum composites reinforced with exhausted alkaline battery powders under quasi-static compression....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-05, Vol.236 (9), p.4876-4884
Hauptverfasser: P, Hariharasakthisudhan, T, Hariharasudhan, S, Karthik, K, Sathickbasha, B, Surya Rajan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The workability study of the composites enhances the understanding of the degree of plastic deformation that can be employed on it. The current research work highlights the response of the low-cost aluminum composites reinforced with exhausted alkaline battery powders under quasi-static compression. The effect of reinforcements and aspect ratio against the strain hardening exponent and strength coefficients were investigated. The microstructural changes after quasi-static compression were studied and related to the changes in the property of the composites. The composite with 6 wt.% of reinforcement showed the least amount of porosity as 1.2%. In most of the cases, the maximum value of average strain hardening exponent with respect to axial strain was noted in the composites with 6 wt. % of reinforcement. The lowest aspect ratio of 0.5 showed the maximum workability in the composites. The average strength coefficient was found to be maximum (308.58 MPa) in the composite with 2 wt.% reinforcement. The elongated grains and slip bands were observed in the microstructure of the compressed specimens.
ISSN:0954-4062
2041-2983
2041-2983
DOI:10.1177/09544062211055339