Neural Approximation-based Model Predictive Tracking Control of Non-holonomic Wheel-legged Robots

This paper proposes a neural approximation based model predictive control approach for tracking control of a nonholonomic wheel-legged robot in complex environments, which features mechanical model uncertainty and unknown disturbances. In order to guarantee the tracking performance of wheel-legged r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems automation, and systems, 2021, Vol.19 (1), p.372-381
Hauptverfasser: Li, Jiehao, Wang, Junzheng, Wang, Shoukun, Qi, Wen, Zhang, Longbin, Hu, Yingbai, Su, Hang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a neural approximation based model predictive control approach for tracking control of a nonholonomic wheel-legged robot in complex environments, which features mechanical model uncertainty and unknown disturbances. In order to guarantee the tracking performance of wheel-legged robots in an uncertain environment, effective approaches for reliable tracking control should be investigated with the consideration of the disturbances, including internal-robot friction and external physical interactions in the robot’s dynamical system. In this paper, a radial basis function neural network (RBFNN) approximation based model predictive controller (NMPC) is designed and employed to improve the tracking performance for nonholonomic wheel-legged robots. Some demonstrations using a BIT-NAZA robot are performed to illustrate the performance of the proposed hybrid control strategy. The results indicate that the proposed methodology can achieve promising tracking performance in terms of accuracy and stability.
ISSN:1598-6446
2005-4092
2005-4092
DOI:10.1007/s12555-019-0927-2