State with spontaneously broken time-reversal symmetry above the superconducting phase transition
The most well-known example of an ordered quantum state—superconductivity—is caused by the formation and condensation of pairs of electrons. Fundamentally, what distinguishes a superconducting state from a normal state is a spontaneously broken symmetry corresponding to the long-range coherence of p...
Gespeichert in:
Veröffentlicht in: | Nature Phys 2021-11, Vol.17 (11), p.1254-1259 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The most well-known example of an ordered quantum state—superconductivity—is caused by the formation and condensation of pairs of electrons. Fundamentally, what distinguishes a superconducting state from a normal state is a spontaneously broken symmetry corresponding to the long-range coherence of pairs of electrons, leading to zero resistivity and diamagnetism. Here we report a set of experimental observations in hole-doped Ba
1−
x
K
x
Fe
2
As
2
. Our specific-heat measurements indicate the formation of fermionic bound states when the temperature is lowered from the normal state. However, when the doping level is
x
≈ 0.8, instead of the characteristic onset of diamagnetic screening and zero resistance expected below the superconducting phase transition, we observe the opposite effect: the generation of self-induced magnetic fields in the resistive state, measured by spontaneous Nernst effect and muon spin rotation experiments. This combined evidence indicates the existence of a bosonic metal state in which Cooper pairs of electrons lack coherence, but the system spontaneously breaks time-reversal symmetry. The observations are consistent with the theory of a state with fermionic quadrupling, in which long-range order exists not between Cooper pairs but only between pairs of pairs.
A state that breaks time-reversal symmetry is observed in the normal phase above the superconducting critical temperature in a multiband superconductor. This could be explained by correlations between the Cooper pairs formed in different bands. |
---|---|
ISSN: | 1745-2473 1745-2481 1745-2481 |
DOI: | 10.1038/s41567-021-01350-9 |