Eigenschemes of Ternary Tensors

We study projective schemes arising from eigenvectors of tensors, called eigenschemes. After some general results, we give a birational description of the variety parametrizing eigenschemes of general ternary symmetric tensors, and we compute its dimension. Moreover, we characterize the locus of tri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied algebra and geometry 2021-01, Vol.5 (4), p.620-650
Hauptverfasser: Beorchia, Valentina, Galuppi, Francesco, Venturello, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study projective schemes arising from eigenvectors of tensors, called eigenschemes. After some general results, we give a birational description of the variety parametrizing eigenschemes of general ternary symmetric tensors, and we compute its dimension. Moreover, we characterize the locus of triples of homogeneous polynomials defining the eigenscheme of a ternary symmetric tensor. Our results allow us to implement algorithms to check whether a given set of points is the eigenscheme of a symmetric tensor and to reconstruct the tensor. Finally, we give a geometric characterization of all reduced zero-dimensional eigenschemes. The techniques we use rely on both classical and modern complex projective algebraic geometry.
ISSN:2470-6566
2470-6566
DOI:10.1137/20M1355410