Rapid Classification of Quantum Sources Enabled by Machine Learning

Deterministic nanoassembly may enable unique integrated on‐chip quantum photonic devices. Such integration requires a careful large‐scale selection of nanoscale building blocks such as solid‐state single‐photon emitters by means of optical characterization. Second‐order autocorrelation is a cornerst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced quantum technologies (Online) 2020-10, Vol.3 (10), p.n/a
Hauptverfasser: Kudyshev, Zhaxylyk A., Bogdanov, Simeon I., Isacsson, Theodor, Kildishev, Alexander V., Boltasseva, Alexandra, Shalaev, Vladimir M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deterministic nanoassembly may enable unique integrated on‐chip quantum photonic devices. Such integration requires a careful large‐scale selection of nanoscale building blocks such as solid‐state single‐photon emitters by means of optical characterization. Second‐order autocorrelation is a cornerstone measurement that is particularly time‐consuming to realize on a large scale. Supervised machine learning‐based classification of quantum emitters as “single” or “not‐single” is implemented based on their sparse autocorrelation data. The method yields a classification accuracy of 95% within an integration time of less than a second, realizing roughly a 100‐fold speedup compared to the conventional Levenberg–Marquardt fitting approach. It is anticipated that machine learning‐based classification will provide a unique route to enable rapid and scalable assembly of quantum nanophotonic devices. Supervised machine learning‐based classification of quantum emitters as “single” or “not‐single” is implemented based on their sparse autocorrelation data. The method yields a classification accuracy of 95% within an integration time of less than a second, realizing roughly a 100‐fold speedup compared to the conventional Levenberg–Marquardt fitting approach.
ISSN:2511-9044
2511-9044
DOI:10.1002/qute.202000067