Interplay Between Loewner and Dirichlet Energies via Conformal Welding and Flow-Lines

The Loewner energy of a Jordan curve is the Dirichlet energy of its Loewner driving term. It is finite if and only if the curve is a Weil–Petersson quasicircle. In this paper, we describe cutting and welding operations on finite Dirichlet energy functions defined in the plane, allowing expression of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2020-02, Vol.30 (1), p.289-321
Hauptverfasser: Viklund, Fredrik, Wang, Yilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Loewner energy of a Jordan curve is the Dirichlet energy of its Loewner driving term. It is finite if and only if the curve is a Weil–Petersson quasicircle. In this paper, we describe cutting and welding operations on finite Dirichlet energy functions defined in the plane, allowing expression of the Loewner energy in terms of Dirichlet energy dissipation. We show that the Loewner energy of a unit vector field flow-line is equal to the Dirichlet energy of the harmonically extended winding. We also give an identity involving a complex-valued function of finite Dirichlet energy that expresses the welding and flow-line identities simultaneously. As applications, we prove that arclength isometric welding of two domains is sub-additive in the energy, and that the energy of equipotentials in a simply connected domain is monotone. Our main identities can be viewed as action functional analogs of both the welding and flow-line couplings of Schramm–Loewner evolution curves with the Gaussian free field.
ISSN:1016-443X
1420-8970
1420-8970
DOI:10.1007/s00039-020-00521-9