Asymptotics of Hankel determinants with a Laguerre-type or Jacobi-type potential and Fisher-Hartwig singularities

We obtain large n asymptotics of n×n Hankel determinants whose weight has a one-cut regular potential and Fisher-Hartwig singularities. We restrict our attention to the case where the associated equilibrium measure possesses either one soft edge and one hard edge (Laguerre-type) or two hard edges (J...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2021-06, Vol.383, p.107672, Article 107672
Hauptverfasser: Charlier, Christophe, Gharakhloo, Roozbeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain large n asymptotics of n×n Hankel determinants whose weight has a one-cut regular potential and Fisher-Hartwig singularities. We restrict our attention to the case where the associated equilibrium measure possesses either one soft edge and one hard edge (Laguerre-type) or two hard edges (Jacobi-type). We also present some applications in the theory of random matrices. In particular, we can deduce from our results asymptotics for partition functions with singularities, central limit theorems, correlations of the characteristic polynomials, and gap probabilities for (piecewise constant) thinned Laguerre and Jacobi-type ensembles. Finally, we mention some links with the topics of rigidity and Gaussian multiplicative chaos.
ISSN:0001-8708
1090-2082
1090-2082
DOI:10.1016/j.aim.2021.107672