Asymptotics of Hankel determinants with a Laguerre-type or Jacobi-type potential and Fisher-Hartwig singularities
We obtain large n asymptotics of n×n Hankel determinants whose weight has a one-cut regular potential and Fisher-Hartwig singularities. We restrict our attention to the case where the associated equilibrium measure possesses either one soft edge and one hard edge (Laguerre-type) or two hard edges (J...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2021-06, Vol.383, p.107672, Article 107672 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain large n asymptotics of n×n Hankel determinants whose weight has a one-cut regular potential and Fisher-Hartwig singularities. We restrict our attention to the case where the associated equilibrium measure possesses either one soft edge and one hard edge (Laguerre-type) or two hard edges (Jacobi-type). We also present some applications in the theory of random matrices. In particular, we can deduce from our results asymptotics for partition functions with singularities, central limit theorems, correlations of the characteristic polynomials, and gap probabilities for (piecewise constant) thinned Laguerre and Jacobi-type ensembles. Finally, we mention some links with the topics of rigidity and Gaussian multiplicative chaos. |
---|---|
ISSN: | 0001-8708 1090-2082 1090-2082 |
DOI: | 10.1016/j.aim.2021.107672 |