A gap principle for dynamics

Let f1,…,fg∈ℂ(z) be rational functions, let Φ=(f1,…,fg) denote their coordinate-wise action on (ℙ1)g, let V ⊂(ℙ1)g be a proper subvariety, and let P be a point in (ℙ1)g(ℂ). We show that if ={n≥0:Φn(P)∈V (ℂ)} does not contain any infinite arithmetic progressions, then must be a very sparse set of int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2010-07, Vol.146 (4), p.1056-1072
Hauptverfasser: Benedetto, Robert L., Ghioca, Dragos, Kurlberg, Pär, Tucker, Thomas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let f1,…,fg∈ℂ(z) be rational functions, let Φ=(f1,…,fg) denote their coordinate-wise action on (ℙ1)g, let V ⊂(ℙ1)g be a proper subvariety, and let P be a point in (ℙ1)g(ℂ). We show that if ={n≥0:Φn(P)∈V (ℂ)} does not contain any infinite arithmetic progressions, then must be a very sparse set of integers. In particular, for any k and any sufficiently large N, the number of n≤N such that Φn(P)∈V (ℂ) is less than log kN, where log k denotes the kth iterate of the log function. This result can be interpreted as an analogue of the gap principle of Davenport–Roth and Mumford.
ISSN:0010-437X
1570-5846
1570-5846
DOI:10.1112/S0010437X09004667