A gap principle for dynamics
Let f1,…,fg∈ℂ(z) be rational functions, let Φ=(f1,…,fg) denote their coordinate-wise action on (ℙ1)g, let V ⊂(ℙ1)g be a proper subvariety, and let P be a point in (ℙ1)g(ℂ). We show that if ={n≥0:Φn(P)∈V (ℂ)} does not contain any infinite arithmetic progressions, then must be a very sparse set of int...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2010-07, Vol.146 (4), p.1056-1072 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let f1,…,fg∈ℂ(z) be rational functions, let Φ=(f1,…,fg) denote their coordinate-wise action on (ℙ1)g, let V ⊂(ℙ1)g be a proper subvariety, and let P be a point in (ℙ1)g(ℂ). We show that if ={n≥0:Φn(P)∈V (ℂ)} does not contain any infinite arithmetic progressions, then must be a very sparse set of integers. In particular, for any k and any sufficiently large N, the number of n≤N such that Φn(P)∈V (ℂ) is less than log kN, where log k denotes the kth iterate of the log function. This result can be interpreted as an analogue of the gap principle of Davenport–Roth and Mumford. |
---|---|
ISSN: | 0010-437X 1570-5846 1570-5846 |
DOI: | 10.1112/S0010437X09004667 |