A weakest link model for multiple mechanism brittle fracture — Model development and application
A multiple mechanism weakest link model for intergranular and transgranular brittle fracture is developed on the basis of experimental observations of a thermally aged low alloy steel. The model development is carried out in tandem with micro mechanical analysis of grain boundary cracking using crys...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanics and physics of solids 2021-02, Vol.147, p.104224, Article 104224 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A multiple mechanism weakest link model for intergranular and transgranular brittle fracture is developed on the basis of experimental observations of a thermally aged low alloy steel. The model development is carried out in tandem with micro mechanical analysis of grain boundary cracking using crystal plasticity modeling of polycrystalline aggregates with the purpose to inform the weakest link model. The fracture modeling presented in this paper is carried out by using a non-local porous plastic Gurson model where the void volume fraction evolution is regularized over two separate length scales. The ductile crack growth preceding the final brittle fracture is well predicted using this type of modeling. When applied to the brittle fracture tests, the weakest link model predicts the fracture toughness distribution remarkably well, both in terms of the constraint and the size effect. Included in the study is also the analysis of a reference material. |
---|---|
ISSN: | 0022-5096 1873-4782 1873-4782 |
DOI: | 10.1016/j.jmps.2020.104224 |