Shearlets as feature extractor for semantic edge detection: the model-based and data-driven realm
Semantic edge detection has recently gained a lot of attention as an image-processing task, mainly because of its wide range of real-world applications. This is based on the fact that edges in images contain most of the semantic information. Semantic edge detection involves two tasks, namely pure ed...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2020-11, Vol.476 (2243), p.1-26 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Semantic edge detection has recently gained a lot of attention as an image-processing task, mainly because of its wide range of real-world applications. This is based on the fact that edges in images contain most of the semantic information. Semantic edge detection involves two tasks, namely pure edge detection and edge classification. Those are in fact fundamentally distinct in terms of the level of abstraction that each task requires. This fact is known as the distracted supervision paradox and limits the possible performance of a supervised model in semantic edge detection. In this work, we will present a novel hybrid method that is based on a combination of the model-based concept of shearlets, which provides probably optimally sparse approximations of a model class of images, and the data-driven method of a suitably designed convolutional neural network. We show that it avoids the distracted supervision paradox and achieves high performance in semantic edge detection. In addition, our approach requires significantly fewer parameters than a pure data-driven approach. |
---|---|
ISSN: | 1364-5021 1471-2946 1471-2946 |
DOI: | 10.1098/rspa.2019.0841 |