Using tailored temperature variations to obtain flawless forming of multi-stacked unidirectional prepreg
In this article, tailored temperature zones are used to obtain improved quality during rapid, high pressure forming of multi-stacked unidirectional prepreg. Particularly in aerospace applications, commonly used forming processes for multi-stacked unidirectional prepreg are often considered a bottlen...
Gespeichert in:
Veröffentlicht in: | Journal of composite materials 2020-11, Vol.54 (26), p.3999-4009 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, tailored temperature zones are used to obtain improved quality during rapid, high pressure forming of multi-stacked unidirectional prepreg. Particularly in aerospace applications, commonly used forming processes for multi-stacked unidirectional prepreg are often considered a bottleneck in production since the forming cycle requires both heating and cooling ramps and consequently takes long time—often about 1 h. It is possible to speed up the process by using elevated pressure and temperature. However, higher pressure and temperature also increase the influence of pressure gradient-driven, in-plane material movement (squeeze flow). This typically appears as radius thinning when forming a C-spar geometry on a male mold. Decrease of lay-up temperature will decrease radius thinning, but due to obstructed interply slippage, instead bending-induced wrinkles appear on the spar flange. In this article, tailored temperatures at the radius and in the flange area are introduced by using a hot lay-up and a cold mold. The results show that temperature differences of 6℃–10℃ between the radius area and the flange edge of the lay-up decreases radius thinning while still avoiding bending-induced wrinkles. Except from the radius temperature also the stacking sequence and the choice of prepreg system showed a significant influence on the radius thinning. |
---|---|
ISSN: | 0021-9983 1530-793X 1530-793X |
DOI: | 10.1177/0021998320924714 |