On the linear global stability analysis of rigid-body motion fluid–structure-interaction problems

A rigorous derivation and validation for linear fluid–structure-interaction (FSI) equations for a rigid-body motion problem is performed in an Eulerian framework. We show that the ‘added stiffness’ terms arising in the formulation of Fanion et al. (Revue Européenne des Éléments Finis, vol. 9, issue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2020-11, Vol.903, Article A35
Hauptverfasser: Negi, P. S., Hanifi, A., Henningson, D. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A rigorous derivation and validation for linear fluid–structure-interaction (FSI) equations for a rigid-body motion problem is performed in an Eulerian framework. We show that the ‘added stiffness’ terms arising in the formulation of Fanion et al. (Revue Européenne des Éléments Finis, vol. 9, issue 6–7, 2000, pp. 681–708) vanish at the FSI interface in a first-order approximation and can be neglected when considering the growth of infinitesimal disturbances. Several numerical tests with rigid-body motion are performed to show the validity of the derived formulation by comparing the time evolution between the linear and nonlinear equations when the base flow is perturbed by identical small-amplitude perturbations. In all cases both the growth rate and angular frequency of the instability matches within $0.1\,\%$ accuracy. The derived formulation is used to investigate the phenomenon of symmetry breaking for a rotating cylinder with an attached splitter plate. The results show that the onset of symmetry breaking can be explained by the existence of a zero frequency linearly unstable mode of the coupled FSI system. Finally, the structural sensitivity of the least stable eigenvalue is studied for an oscillating cylinder, which is found to change significantly when the fluid and structural frequencies are close to resonance.
ISSN:0022-1120
1469-7645
1469-7645
DOI:10.1017/jfm.2020.685