Multiplicative updates for convolutional NMF under β-divergence

We generalize the convolutional NMF by taking the β -divergence as the contrast function and present the exact multiplicative updates for its factors in closed form. The new updates unify the β -NMF and the convolutional NMF. We state why almost all existing updates are inexact and/or approximative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters 2020-09, Vol.14 (6), p.1339-1352
Hauptverfasser: Villasana T., Pedro J., Gorlow, Stanislaw, Hariraman, Arvind T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize the convolutional NMF by taking the β -divergence as the contrast function and present the exact multiplicative updates for its factors in closed form. The new updates unify the β -NMF and the convolutional NMF. We state why almost all existing updates are inexact and/or approximative w.r.t. the convolutional data model. In addition, we prove that the β -divergence is nonincreasing under our updates and confirm numerically that the updates are stable and that the convergence of the contrast function is consistent across the most common values of β .
ISSN:1862-4472
1862-4480
1862-4480
DOI:10.1007/s11590-019-01434-9