Multiplicative updates for convolutional NMF under β-divergence
We generalize the convolutional NMF by taking the β -divergence as the contrast function and present the exact multiplicative updates for its factors in closed form. The new updates unify the β -NMF and the convolutional NMF. We state why almost all existing updates are inexact and/or approximative...
Gespeichert in:
Veröffentlicht in: | Optimization letters 2020-09, Vol.14 (6), p.1339-1352 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize the convolutional NMF by taking the
β
-divergence as the contrast function and present the exact multiplicative updates for its factors in closed form. The new updates unify the
β
-NMF and the convolutional NMF. We state why almost all existing updates are inexact and/or approximative w.r.t. the convolutional data model. In addition, we prove that the
β
-divergence is nonincreasing under our updates and confirm numerically that the updates are stable and that the convergence of the contrast function is consistent across the most common values of
β
. |
---|---|
ISSN: | 1862-4472 1862-4480 1862-4480 |
DOI: | 10.1007/s11590-019-01434-9 |