Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma
To define the cellular composition and architecture of cutaneous squamous cell carcinoma (cSCC), we combined single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from a series of human cSCCs and matched normal skin. cSCC exhibited four tumor subpopulations, three...
Gespeichert in:
Veröffentlicht in: | Cell 2020-07, Vol.182 (2), p.497-514.e22 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To define the cellular composition and architecture of cutaneous squamous cell carcinoma (cSCC), we combined single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from a series of human cSCCs and matched normal skin. cSCC exhibited four tumor subpopulations, three recapitulating normal epidermal states, and a tumor-specific keratinocyte (TSK) population unique to cancer, which localized to a fibrovascular niche. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing TSK cells as a hub for intercellular communication. Multiple features of potential immunosuppression were observed, including T regulatory cell (Treg) co-localization with CD8 T cells in compartmentalized tumor stroma. Finally, single-cell characterization of human tumor xenografts and in vivo CRISPR screens identified essential roles for specific tumor subpopulation-enriched gene networks in tumorigenesis. These data define cSCC tumor and stromal cell subpopulations, the spatial niches where they interact, and the communicating gene networks that they engage in cancer.
[Display omitted]
•Profiling of 10 human skin SCCs and matched normals via scRNA-seq, ST, and MIBI•Tumor-specific keratinocytes (TSKs) reside within a fibrovascular niche at leading edges•Distinct ligand-receptor and spatial niche associations for tumor and stromal cells.•Subpopulation essential tumorigenic gene networks defined by in vivo CRISPR screening
Integration of high-dimensional multi-omics approaches to characterize human cutaneous squamous cell carcinoma identifies a tumor-specific keratinocyte population as well as the immune infiltrates and heterogeneity at tumor leading edges. |
---|---|
ISSN: | 0092-8674 1097-4172 1097-4172 |
DOI: | 10.1016/j.cell.2020.05.039 |