Integration of Colloidal PbS/CdS Quantum Dots with Plasmonic Antennas and Superconducting Detectors on a Silicon Nitride Photonic Platform

Single-photon sources and detectors are indispensable building blocks for integrated quantum photonics, a research field that is seeing ever increasing interest for numerous applications. In this work, we implemented essential components for a quantum key distribution transceiver on a single photoni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-08, Vol.19 (8), p.5452-5458
Hauptverfasser: Elsinger, Lukas, Gourgues, Ronan, Zadeh, Iman E, Maes, Jorick, Guardiani, Antonio, Bulgarini, Gabriele, Pereira, Silvania F, Dorenbos, Sander N, Zwiller, Val, Hens, Zeger, Van Thourhout, Dries
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-photon sources and detectors are indispensable building blocks for integrated quantum photonics, a research field that is seeing ever increasing interest for numerous applications. In this work, we implemented essential components for a quantum key distribution transceiver on a single photonic chip. Plasmonic antennas on top of silicon nitride waveguides provide Purcell enhancement with a concurrent increase of the count rate, speeding up the microsecond radiative lifetime of IR-emitting colloidal PbS/CdS quantum dots (QDs). The use of low-fluorescence silicon nitride, with a waveguide loss smaller than 1 dB/cm, made it possible to implement high extinction ratio optical filters and low insertion loss spectrometers. Waveguide-coupled superconducting nanowire single-photon detectors allow for low time-jitter single-photon detection. To showcase the performance of the components, we demonstrate on-chip lifetime spectroscopy of PbS/CdS QDs. The method developed in this paper is predicted to scale down to single QDs, and newly developed emitters can be readily integrated on the chip-based platform.
ISSN:1530-6984
1530-6992
1530-6992
DOI:10.1021/acs.nanolett.9b01948