3D and Porous RGDC‐Functionalized Polyester‐Based Scaffolds as a Niche to Induce Osteogenic Differentiation of Human Bone Marrow Stem Cells

Polyester‐based scaffolds covalently functionalized with arginine‐glycine‐aspartic acid‐cysteine (RGDC) peptide sequences support the proliferation and osteogenic differentiation of stem cells. The aim is to create an optimized 3D niche to sustain human bone marrow stem cell (hBMSC) viability and os...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2019-06, Vol.19 (6), p.e1900049-n/a
Hauptverfasser: Yassin, Mohammed A., Fuoco, Tiziana, Mohamed‐Ahmed, Samih, Mustafa, Kamal, Finne‐Wistrand, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyester‐based scaffolds covalently functionalized with arginine‐glycine‐aspartic acid‐cysteine (RGDC) peptide sequences support the proliferation and osteogenic differentiation of stem cells. The aim is to create an optimized 3D niche to sustain human bone marrow stem cell (hBMSC) viability and osteogenic commitment, without reliance on differentiation media. Scaffolds consisting of poly(lactide‐co‐trimethylene carbonate), poly(LA‐co‐TMC), and functionalized poly(lactide) copolymers with pendant thiol groups are prepared by salt‐leaching technique. The availability of functional groups on scaffold surfaces allows for an easy and straightforward method to covalently attach RGDC peptide motifs without affecting the polymerization degree. The strategy enables the chemical binding of bioactive motifs on the surfaces of 3D scaffolds and avoids conventional methods that require harsh conditions. Gene and protein levels and mineral deposition indicate the osteogenic commitment of hBMSC cultured on the RGDC functionalized surfaces. The osteogenic commitment of hBMSC is enhanced on functionalized surfaces compared with nonfunctionalized surfaces and without supplementing media with osteogenic factors. Poly(LA‐co‐TMC) scaffolds have potential as scaffolds for osteoblast culture and bone grafts. Furthermore, these results contribute to the development of biomimetic materials and allow a deeper comprehension of the importance of RGD peptides on stem cell transition toward osteoblastic lineage. Bioactive poly(l‐lactide‐co‐trimethylene carbonate) scaffolds are successfully designed as a 3D niche to sustain human bone marrow stem cell viability and osteogenic commitment, without reliance on differentiation media. The approach enables the chemical binding of RGDC motifs on the surfaces of 3D scaffolds and avoids conventional methods that require harsh conditions.
ISSN:1616-5187
1616-5195
1616-5195
DOI:10.1002/mabi.201900049