SWIRL: A sequential windowed inverse reinforcement learning algorithm for robot tasks with delayed rewards
We present sequential windowed inverse reinforcement learning (SWIRL), a policy search algorithm that is a hybrid of exploration and demonstration paradigms for robot learning. We apply unsupervised learning to a small number of initial expert demonstrations to structure future autonomous exploratio...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2019-03, Vol.38 (2-3), p.126-145 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present sequential windowed inverse reinforcement learning (SWIRL), a policy search algorithm that is a hybrid of exploration and demonstration paradigms for robot learning. We apply unsupervised learning to a small number of initial expert demonstrations to structure future autonomous exploration. SWIRL approximates a long time horizon task as a sequence of local reward functions and subtask transition conditions. Over this approximation, SWIRL applies Q-learning to compute a policy that maximizes rewards. Experiments suggest that SWIRL requires significantly fewer rollouts than pure reinforcement learning and fewer expert demonstrations than behavioral cloning to learn a policy. We evaluate SWIRL in two simulated control tasks, parallel parking and a two-link pendulum. On the parallel parking task, SWIRL achieves the maximum reward on the task with 85% fewer rollouts than Q-learning, and one-eight of demonstrations needed by behavioral cloning. We also consider physical experiments on surgical tensioning and cutting deformable sheets using a da Vinci surgical robot. On the deformable tensioning task, SWIRL achieves a 36% relative improvement in reward compared with a baseline of behavioral cloning with segmentation. |
---|---|
ISSN: | 0278-3649 1741-3176 1741-3176 |
DOI: | 10.1177/0278364918784350 |