Micromachined Filters at 450 GHz With 1% Fractional Bandwidth and Unloaded Q Beyond 700

This letter presents two silicon-micromachined narrowband fourth-order waveguide filter concepts with center frequency of 450 GHz, which are the first narrowband submillimeter-wave filters implemented in any technology with a fractional bandwidth as low as 1%. Both filters designs are highly compact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on terahertz science and technology 2019-01, Vol.9 (1), p.106-108
Hauptverfasser: Glubokov, Oleksandr, Zhao, Xinghai, Campion, James, Shah, Umer, Oberhammer, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter presents two silicon-micromachined narrowband fourth-order waveguide filter concepts with center frequency of 450 GHz, which are the first narrowband submillimeter-wave filters implemented in any technology with a fractional bandwidth as low as 1%. Both filters designs are highly compact and have axial port arrangements, so that they can be mounted directly between two standard waveguide flanges without needing any split-block interposers. The first filter concept contains two TM 110 dual-mode cavities of circular shape with coupling slots and perturbations arranged in two vertically stacked layers, while the second filter concept is composed of four TE 101 series resonators arranged in a folded, two-level topology without crosscouplings. Prototype devices are fabricated in a multilayer chip platform by high-precision, low-surface roughness deep-silicon etching on silicon-on-insulator wafers. The measured passband insertion loss of two prototype devices of the dual-mode circular-cavity filters is 2.3 dB, and 2.6 dB for three prototypes of the folded filter design. The corresponding extracted unloaded quality factors of the resonators are 786 ± 7 and 703 ± 13, respectively, which are the best so far reported for submillimeter-wave filters in any technology. The presented filters are extremely compact in terms of size; their footprints have areas of only 0.53 and 0.55 mm 2 , respectively, and the thickness between the waveguide flanges is 0.9 mm.
ISSN:2156-342X
2156-3446
2156-3446
DOI:10.1109/TTHZ.2018.2883075