Roadmap on transformation optics

Transformation optics asks, using Maxwell's equations, what kind of electromagnetic medium recreates some smooth deformation of space? The guiding principle is Einstein's principle of covariance: that any physical theory must take the same form in any coordinate system. This requirement fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optics (2010) 2018-06, Vol.20 (6), p.63001
Hauptverfasser: McCall, Martin, Pendry, John B, Galdi, Vincenzo, Lai, Yun, Horsley, S A R, Li, Jensen, Zhu, Jian, Mitchell-Thomas, Rhiannon C, Quevedo-Teruel, Oscar, Tassin, Philippe, Ginis, Vincent, Martini, Enrica, Minatti, Gabriele, Maci, Stefano, Ebrahimpouri, Mahsa, Hao, Yang, Kinsler, Paul, Gratus, Jonathan, Lukens, Joseph M, Weiner, Andrew M, Leonhardt, Ulf, Smolyaninov, Igor I, Smolyaninova, Vera N, Thompson, Robert T, Wegener, Martin, Kadic, Muamer, Cummer, Steven A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transformation optics asks, using Maxwell's equations, what kind of electromagnetic medium recreates some smooth deformation of space? The guiding principle is Einstein's principle of covariance: that any physical theory must take the same form in any coordinate system. This requirement fixes very precisely the required electromagnetic medium. The impact of this insight cannot be overestimated. Many practitioners were used to thinking that only a few analytic solutions to Maxwell's equations existed, such as the monochromatic plane wave in a homogeneous, isotropic medium. At a stroke, transformation optics increases that landscape from 'few' to 'infinity', and to each of the infinitude of analytic solutions dreamt up by the researcher, there corresponds an electromagnetic medium capable of reproducing that solution precisely. The most striking example is the electromagnetic cloak, thought to be an unreachable dream of science fiction writers, but realised in the laboratory a few months after the papers proposing the possibility were published. But the practical challenges are considerable, requiring meta-media that are at once electrically and magnetically inhomogeneous and anisotropic. How far have we come since the first demonstrations over a decade ago? And what does the future hold? If the wizardry of perfect macroscopic optical invisibility still eludes us in practice, then what compromises still enable us to create interesting, useful, devices? While three-dimensional (3D) cloaking remains a significant technical challenge, much progress has been made in two dimensions. Carpet cloaking, wherein an object is hidden under a surface that appears optically flat, relaxes the constraints of extreme electromagnetic parameters. Surface wave cloaking guides sub-wavelength surface waves, making uneven surfaces appear flat. Two dimensions is also the setting in which conformal and complex coordinate transformations are realisable, and the possibilities in this restricted domain do not appear to have been exhausted yet. Beyond cloaking, the enhanced electromagnetic landscape provided by transformation optics has shown how fully analytic solutions can be found to a number of physical scenarios such as plasmonic systems used in electron energy loss spectroscopy and cathodoluminescence. Are there further fields to be enriched? A new twist to transformation optics was the extension to the spacetime domain. By applying transformations to spacetime, rather than just s
ISSN:2040-8978
2040-8986
2040-8986
DOI:10.1088/2040-8986/aab976