The Nonlinear Steepest Descent Method for Riemann-Hilbert Problems of Low Regularity
We prove a nonlinear steepest descent theorem for Riemann-Hilbert problems with Carleson jump contours and jump matrices of low regularity and slow decay. We illustrate the theorem by deriving the long-time asymptotics for the mKdV equation in the similarity sector for initial data with limited deca...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2017-01, Vol.66 (4), p.1287-1332 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a nonlinear steepest descent theorem for Riemann-Hilbert problems with Carleson jump contours and jump matrices of low regularity and slow decay. We illustrate the theorem by deriving the long-time asymptotics for the mKdV equation in the similarity sector for initial data with limited decay and regularity. |
---|---|
ISSN: | 0022-2518 1943-5258 1943-5258 |
DOI: | 10.1512/iumj.2017.66.6078 |