The Nonlinear Steepest Descent Method for Riemann-Hilbert Problems of Low Regularity

We prove a nonlinear steepest descent theorem for Riemann-Hilbert problems with Carleson jump contours and jump matrices of low regularity and slow decay. We illustrate the theorem by deriving the long-time asymptotics for the mKdV equation in the similarity sector for initial data with limited deca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2017-01, Vol.66 (4), p.1287-1332
1. Verfasser: Lenells, Jonatan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a nonlinear steepest descent theorem for Riemann-Hilbert problems with Carleson jump contours and jump matrices of low regularity and slow decay. We illustrate the theorem by deriving the long-time asymptotics for the mKdV equation in the similarity sector for initial data with limited decay and regularity.
ISSN:0022-2518
1943-5258
1943-5258
DOI:10.1512/iumj.2017.66.6078